
resonance Documentation
Release 0.23.0.dev0

Jason K. Moore, Kenneth Lyons

Feb 29, 2020

Contents:

1 Topical Outline 3
1.1 Analyzing Vibrating Systems . 4
1.2 Modeling Vibrating Systems . 7
1.3 Designing Vibrating Systems . 9

2 Creating and Exercising a Custom Single Degree of Freedom System 11
2.1 Creating a new system . 11
2.2 Simulating the free response . 13
2.3 Adding measurements . 17
2.4 Plotting the configuration . 17
2.5 Animating the configuration . 19
2.6 Response to sinusoidal forcing . 20
2.7 Frequency response . 21
2.8 Response to periodic forcing . 22

3 API 25
3.1 resonance/system.py . 25
3.2 resonance/linear_systems.py . 29
3.3 resonance/nonlinear_systems.py . 38
3.4 resonance/functions.py . 40

4 Indices and tables 45

Bibliography 47

Python Module Index 49

Index 51

i

ii

resonance Documentation, Release 0.23.0.dev0

Resonance is a companion software library to an interactive textbook written for an upper level undergraduate intro-
duction to mechanical vibrations course.

The library is specifically designed for learning engineering principles through computational thinking and computa-
tional experimentation and thus we have guidelines on its design to facilitate this. Those guidelines are roughly:

• Don’t teach programming for the sake of teaching programming. Show students how to solve problems and
introduce programming along the way to solve those problems.

• Hide the fine details of programming and only use simple constructs, so that learning vibrations is highlighted
instead of programming.

• Hide the simulation details (linear/nonlinear ODE solutions), but allow them to be exposed if needed.

• The software design is centered around the “System” object. Systems represent real things: a car, a bridge, a
bicycle, an airplane wing.

• Students can use and construct systems.

• Students only create functions, no need to understand classes and their construction.

• Easy visualizations (time history plots and animations of systems)

• Extra informative and lots of error messages (try to predict student mistakes)

Contents: 1

resonance Documentation, Release 0.23.0.dev0

2 Contents:

CHAPTER 1

Topical Outline

The course is taught over 20 two hour class periods during a quarter system of 10 weeks of instructions and 1 week
for examinations. One of the 20 class periods is reserved for a midterm examination, 2 hours are reserved for exam
reviews leaving 36 hours of in class time. The following lists the topics for each of the class periods which correspond
to the detailed headers below:

3

resonance Documentation, Release 0.23.0.dev0

L# Date Notebook #
01 W Sep 27 1, 2
02 M Oct 02 3
03 W Oct 04 4
04 M Oct 09 5
05 W Oct 11 6
06 M Oct 16 7
07 W Oct 18 8
08 M Oct 23 9
NA T Oct 24 Drop Date
09 W Oct 25 10
10 M Oct 30 11
11 W Nov 01 12
12 M Nov 06 Exam
13 W Nov 08 13
NA F Nov 10 Veterans Day Holiday
14 M Nov 13 14
15 W Nov 15 15
16 M Nov 20 16
17 W Nov 22 17
NA R Nov 23 Thanksgiving Holiday
NA F Nov 24 Thanksgiving Holiday
18 M Nov 27 18
19 W Nov 29 19
20 M Dec 04 20
21 W Dec 06 21
NA T Dec 12 Final Exam @ 6:00 PM

1.1 Analyzing Vibrating Systems

1.1.1 1. Introduction to Jupyter

This notebook introduces students to the Jupyter notebook environment and establishes good practices for creating
computational notebooks and scientific python programming.

After the completion of this assignment students will be able to:

• open Jupyter notebooks and operate basic functionality

• fetch assignments, complete exercises, submit work and view the graded work

• solve basic scientific python problems

• create a well formatted and fully executing notebook

1.1.2 2. Introduction to vibrations: Book Balancing on a Cup

This notebook introduces a single degree of freedom vibratory system in which a textbook balances on a cylindrical
cup. The system is implemented as a model that students can interact with in order to visualize its free response and
compare to the demonstration in the classroom.

After the completion of this assignment students will be able to:

4 Chapter 1. Topical Outline

resonance Documentation, Release 0.23.0.dev0

• visualize a system’s free response

• estimate the period of a sinusoidal vibration from a time series

• compare a computer simulation result to experimental result

• interactively adjust the book inertia to see the affect on system response

• understand the concept of natural frequency nd its relationship to mass/inertia

1.1.3 3. Measuring a Bicycle Wheel’s Inertia

This notebook introduces the concept of using vibratory characteristics to estimate parameters of an existing system.
It discusses how vibrations can be measured and how these measurements might relate to parameters of interest, such
as the inertia of a bicycle wheel.

After the completion of this assignment students will be able to:

• describe different methods of measuring vibrations

• choose appropriate sensors and sensor placement

• visualize the vibrational measurements

• use curve fitting to estimate the period of oscillation

• understand the concept of natural frequency and its relationship to mass/inertia and stiffness

• state two of the three fundamental characteristics that govern vibration (mass/inertia and stiffness)

• use frequency domain techniques to characterize a system’s behavior

1.1.4 4. Clock Pendulum with Air Drag Damping

This notebook introduces the third fundamental characteristic of vibration: energy dissipation through damping. A
simple pendulum model is implemented that allows students to vary the damping parameters and visualize the three
regimes of linear damping.

After the completion of this assignment students will be able to:

• understand the concept of damped natural frequency and its relationship to mass/inertia, stiffness, and damping

• state the three fundamental characteristics that make a system vibrate

• compute the free response of a linear system with viscous-damping in all three damping regimes

• identify critically damped, underdamped, and overdamped behavior

• determine whether a linear system is over/under/critically damped given its dynamic properties

• understand the difference between underdamping, overdamping, and crticial damping

1.1.5 5. Clock Pendulum with Air Drag and Joint Friction

This notebook builds on the previous one by introducing nonlinear damping through Coulomb friction. Students will
be able to work with both a linear and nonlinear version of the same system (pendulum) in order to compare the free
response in both cases.

After the completion of this assignment students will be able to:

• identify the function that governs the decay envelope

1.1. Analyzing Vibrating Systems 5

resonance Documentation, Release 0.23.0.dev0

• compare this non-linear behavior to the linear behavior

• estimate the period of oscillation

• compute the free response of a non-linear system with viscous and coulomb damping

1.1.6 6. Vertical Vibration of a Bus Driver’s Seat

This notebook introduces external forcing of a vibratory system, where the external force is modeled as a sinusoidal
input to the bottom of a bus driver’s seat.

After the completion of this assignment students will be able to:

• excite a system with a sinusoidal input

• understand the difference in transient and steady state solutions

• use autocorrelation to determine period

• relate the frequency response to the time series

• create a frequency response plot

• define resonance and determine the parameters that cause resonance

1.1.7 7. Vertical vibration of a Bus Driver’s Seat with a Leaf Spring

This notebook builds on the previous one by replacing the linear spring with a realistic leaf spring.

After the completion of this assignment students will be able to:

• create a force versus displacement curve for a leaf spring

• describe the time response and frequency response of a non-linear system

• show that sinusoidal fitting does not necessarily describe non-linear vibration

1.1.8 8. Bicycle Lateral Vibration

This notebook introduces a simple lean and steer bicycle model as an example of a system with multiple degrees of
freedom. Coupling and modes are discussed from a data analysis perspective.

After the completion of this assignment students will be able to:

• get a sense of the coupling of input to output through frequency response plots

• simulate a 2 DoF vibratory model

• identify a MDoF system and see effects of coupling through time and frequency domain

• determine if a general 2 DoF is stable

• sweep through input frequencies to discover modal frequencies

1.1.9 9. Simulating a building during an earthquake

This notebook uses a lumped parameter multi-story building model as a many-degree-of-freedom system with all
oscillatory modes.

After the completion of this assignment students will be able to:

6 Chapter 1. Topical Outline

resonance Documentation, Release 0.23.0.dev0

• examine time domain and frequency coupling with MDoF

• sweeping through frequencies to discover modal frequencies

• visualize the system’s response at modal frequencies to see mode shapes

1.2 Modeling Vibrating Systems

1.2.1 10. Modeling the Bicycle Wheel Inertia Measurement System

This notebook walks through modeling two different test rigs for determining the vibrational characteristics of a
bicycle wheel. After coming up with a simple model the students will use the canonical linear form of the equations
of motion to derive various vibrational parameters.

After the completion of this assignment students will be able to:

• derive the equations of motion of a compound pendulum with Lagrange’s method

• derive the equations of motion of a torsional pendulum with Lagrange’s method

• linearize the compound pendulum equation

• put equations in canonical form

• review solutions to ODEs

1.2.2 11. Modeling a non-linear spring

TODO : Think this out more.

After the completion of this assignment students will be able to:

• will be able to derive the nonlinear euqations of motion of a system with simple kinmeatics with lagrange’s
method

1.2.3 12. Modeling the car on the bumpy road

Here will will present the base excitation single degree of freedom system and the students will derive the equations
of motion. They will then explore the displacement and force transmisiblity frequency response functions.

After the completion of this assignment students will be able to:

• derive the linear equations of motion ofa system with simple kinematics using lagrange’s method

• create system object with custom euqations of motion an simulate the system

1.2.4 13. Modeling the book on a cup

The book balancing on the cup will be revisited. The students will derive the equations of motion which require more
complex kinematic analysis and explore the analytical equations of motion. The stability thresholds will be determined
as well as the period from the linear model.

After the completion of this assignment students will be able to:

• derive the euqations of motion of a system with non-trivial kinematics with lagrange’s method

• apply a linearization procedure to non-linear equations of motion

1.2. Modeling Vibrating Systems 7

resonance Documentation, Release 0.23.0.dev0

• determine the stability of a linear system analytically and verify through simulation

1.2.5 14. Balancing your car tire at the autoshop

The mass imbalance problem will be presented through the analytical model of an unbalance car tire. The frequency
response will be derived and examined.

After the completion of this assignment students will be able to:

• derive the equations of motion fo a mass imbalance system

1.2.6 15. Engine cam non-sinusoidal periodic forcing

Using an engine cam piecewise periodic function the students will learn how a Fourier series can be used to find the
solution to the differential equations symbolicaly.

After the completion of this assignment students will be able to:

• generate a Fourier series of a periodic function

• find the analytic solution of the the mass-spring-damper system

1.2.7 16. Modeling a bulding during an earthquake

We will revisit the multi-story building model and derive the equations of motion for the system. The students will use
eigenanalysis of the simple system to discover the modes of motion and simulate the behavior.

After the completion of this assignment students will be able to:

• perform modal analysis of the system to determine its modal frequencies and mode shapes

• represent model using a matric equation of motion (canoncial form)

• formulate the equations of motion for a MDoF system

• use eignvalue analyssis to determine the modeshapes of a mDoF system

• plot the motion of a MDoF system (with no damping) using the analytical solution

• form a MDoF model corresponding to a chain of floors in a buliding

1.2.8 17. Bicycle Model

The students will be given the analytical canocial form of the bicycle equations that do not have simple damping. They
will have to convert to state space form and do a full eigenanalysis of the general form. The modes will be examined
and the nature of the bicycle motion discovered.

After the completion of this assignment students will be able to:

• convert the canonical linear form into state space form

• interpret eigenvalues and eienvectors of a general 2 DoF linear system

8 Chapter 1. Topical Outline

resonance Documentation, Release 0.23.0.dev0

1.3 Designing Vibrating Systems

1.3.1 18. Design a Clock that Keeps Time

The students will be presented with a compound pendulum model of a clock’s bob that does not keep time well due to
friction and air drag. They will be tasked with designing a system that adds in the right amount of additional energy
so that the pendulum has the desired constant period.

After the completion of this assignment students will be able to:

• develop an analytic model of a energy injection system

• simulate the motion of clock and determine its time varying period

• choose the energy injection system parameters that will cause the clock to work as intended

1.3.2 19. Isolator Selection

The students will be presented with a model of X and asked to select and/or design a commercially available vibration
isolator that ensures the system meets specific vibrational design criteria.

After the completion of this assignment students will be able to:

• discuss and justify trade-offs and design decisions

• model the system with additional damping provided by isolation

• select/design a vibration isolator to meet given vibration specifications

• analyze a system’s motion to determine its vibrational characteristics

1.3.3 20. Designing a Tuned Mass Damper to Earthquake Proof a Building

Students will be presented with a single (or multi?) floor building model. They will need to modify the model to
includes a laterally actuated mass on the roof. They will be asked to design an actuation scheme that prevents the
building from having too large of displacements or resonance while excited by a earthquake-like vibration at its base.

After the completion of this assignment students will be able to:

• add a generic vibration absorber to a building model

• use a building model to simulate the motion of a building without damping

• choose design criteria for the building and justify decisions (with ISO standards)

• design an absorber that meets their design criteria

• use the frequency response function to demonstrate the effect of the vibration absorber

1.3.4 21. Designing a stable bicycle

The students will be presented with a 2 DoF linear model of a bicycle in canonical form with analytical expressions for
the M, C, and K matrix entries that are functions of the 25 bicycle parameters. The students will be asked to discover
bicycle designs that meet certain criteria through eigenanalysis and simulation.

After the completion of this assignment students will be able to:

• determine parameters which cause the 2 DoF system to be stable/unstable

1.3. Designing Vibrating Systems 9

resonance Documentation, Release 0.23.0.dev0

• simulate and visualize the motion of a bicycle with difference parameters

• determine and describe the influence of the physical parameters, initial conditions, and steering input on the
dynamics of the vehicle

• design a bicycle that meets specific design criteria

1.3.5 22. Designing Shock Absorbtion for a Car

The students will be presented with 2D planar data generated from a “ground truth” 3 DoF half car model. Their job
will be to design a quarter car model that behaves similarly to the ground truth model. Once they have a working simple
model, then they will design an improved shock absorber for the quarter car model using analytic and computational
methods. The instructors will then provide the students with the ground truth model, i.e. the “real” car, and the students
will need to show that the ride quality is improved and that design criteria is met.

After the completion of this assignment students will be able to:

• develop a simple analytic model that predicts motion provided from planar 2D “experimental” data

• select springs and dampers to meet given design criteria by demonstrating performance with the simple analytic
model

• demonstrate that the designed shock absorber works well for the “real” car

• discuss why the design does or does not meet the design criteria

• reflect on their modeling and design decisions after having tested it against the ground truth model

10 Chapter 1. Topical Outline

CHAPTER 2

Creating and Exercising a Custom Single Degree of Freedom System

Note: You can download this example as a Python script: custom-sdof-system.py or Jupyter notebook: custom-sdof-
system.ipynb.

2.1 Creating a new system

The first step is to import a “blank” SingleDoFLinearSystem and initialize it.

from resonance.linear_systems import SingleDoFLinearSystem

msd_sys = SingleDoFLinearSystem()

Now define the constant variables for the system. In this case, the single degree of freedom system will be described
by its mass, natural frequency, and damping ratio.

msd_sys.constants['m'] = 1.0 # kg
msd_sys.constants['fn'] = 1.0 # Hz
msd_sys.constants['zeta'] = 0.1 # unitless

msd_sys.constants

{'m': 1.0, 'fn': 1.0, 'zeta': 0.1}

Define the coordinate and speed. The software assumes that the speed is defined as the time derivative of the coordi-
nate, i.e. 𝑣 = �̇�.

msd_sys.coordinates['x'] = 1.0 # m
msd_sys.speeds['v'] = 0.0 # m/s

11

resonance Documentation, Release 0.23.0.dev0

msd_sys.coordinates

{'x': 1.0}

msd_sys.speeds

{'v': 0.0}

msd_sys.states

{'x': 1.0, 'v': 0.0}

Now that the coordinate, speed, and constants are defined the equations of motion can be defined. For a single degree
of freedom system a Python function must be defined that uses the system’s constants to compute the coefficients to
the canonical second order equation, 𝑚�̇� + 𝑐𝑣 + 𝑘𝑥 = 0.

The inputs to the function are the constants. The variable names should match those defined above on the system.

import numpy as np

def calculate_canonical_coefficients(m, fn, zeta):
"""Returns the system's mass, damping, and stiffness coefficients given
the system's constants."""
wn = 2*np.pi*fn
k = m*wn**2
c = zeta*2*wn*m
return m, c, k

msd_sys.canonical_coeffs_func = calculate_canonical_coefficients

Once this function is defined and added to the system 𝑚, 𝑐, 𝑘 can be computed using:

msd_sys.canonical_coefficients()

(1.0, 1.2566370614359172, 39.47841760435743)

The period of the natural frequency can be computed with:

msd_sys.period()

1.005037815259212

All information about the system can be displayed:

msd_sys

System name: SingleDoFLinearSystem

Canonical coefficients function defined: True
Configuration plot function defined: False
Configuration update function defined: False

Constants
=========

(continues on next page)

12 Chapter 2. Creating and Exercising a Custom Single Degree of Freedom System

resonance Documentation, Release 0.23.0.dev0

(continued from previous page)

m = 1.00000
fn = 1.00000
zeta = 0.10000

Coordinates
===========
x = 1.00000

Speeds
======
v = d(x)/dt = 0.00000

Measurements
============

2.2 Simulating the free response

The free_response() function simulates the now fully defined system given as an initial value problem. One or
both of the coordinates and speeds must be set to provide a free response. The following shows the response to both 𝑥
and 𝑣 being set to some initial values.

msd_sys.coordinates['x'] = -5.0
msd_sys.speeds['v'] = 8.0

free_response() returns a Pandas DataFramewith the time values as the index and columns for the coordinate,
speed, and additionally the time derivative of the speed (acceleration in this case). See https://pandas.pydata.org/
pandas-docs/stable/getting_started/dsintro.html for an introduction to DataFrame.

trajectories = msd_sys.free_response(5.0)
trajectories

There are a variety of plotting methods associated with the DataFrame that can be used to quickly plot the trajec-
tories of the coordinate, speed, and acceleration. See more about plotting DataFrames at https://pandas.pydata.org/
pandas-docs/stable/user_guide/visualization.html.

axes = trajectories.plot(subplots=True)

2.2. Simulating the free response 13

https://pandas.pydata.org/pandas-docs/stable/getting_started/dsintro.html
https://pandas.pydata.org/pandas-docs/stable/getting_started/dsintro.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/visualization.html

resonance Documentation, Release 0.23.0.dev0

2.2.1 Response to change in constants

This system is parameterized by its mass, natural frequency, and damping ratio. It can be useful to plot the trajectories
of position for different values of 𝜁 for example.

Set the initial conditions back to simply stretching the spring 1 meter:

msd_sys.coordinates['x'] = 1.0
msd_sys.speeds['v'] = 0.0

Now change 𝜁 to different values and simulate the free response to see the different damping regimes:

Un-damped, 𝜁 = 0

msd_sys.constants['zeta'] = 0.0 # Unitless
trajectories = msd_sys.free_response(5.0)
axes = trajectories['x'].plot()

14 Chapter 2. Creating and Exercising a Custom Single Degree of Freedom System

resonance Documentation, Release 0.23.0.dev0

Under-damped, 0 < 𝜁 < 1

msd_sys.constants['zeta'] = 0.5 # Unitless
trajectories = msd_sys.free_response(5.0)
axes = trajectories['x'].plot()

Critically damped, 𝜁 = 1

2.2. Simulating the free response 15

resonance Documentation, Release 0.23.0.dev0

msd_sys.constants['zeta'] = 1.0 # Unitless
trajectories = msd_sys.free_response(5.0)
axes = trajectories['x'].plot()

Over-damped, 𝜁 > 1

msd_sys.constants['zeta'] = 2.0 # Unitless
trajectories = msd_sys.free_response(5.0)
axes = trajectories['x'].plot()

16 Chapter 2. Creating and Exercising a Custom Single Degree of Freedom System

resonance Documentation, Release 0.23.0.dev0

2.3 Adding measurements

It is often useful to calculate the trajectories of other quantities. Systems in resonance allow “measurements” to
be defined. These measurements are functions of the constants, coordinates, speeds, and/or time. To create a new
measurement, create a function that returns the quantity of interest. Here a measurement function is defined that
calculates the kinetic energy (12𝑚𝑣2) of the system and then added to the system with variable name KE.

def calculate_kinetic_energy(m, v):
return m*v**2/2

msd_sys.add_measurement('KE', calculate_kinetic_energy)

Once added, the measurement will be computed and added to the DataFrame containing the trajectories:

msd_sys.constants['zeta'] = 0.5 # Unitless
trajectories = msd_sys.free_response(5.0)
trajectories

and can be plotted like any other column:

axes = trajectories['KE'].plot()

2.4 Plotting the configuration

resonance systems can plot and animate at the system’s configuration. To do so, a custom function that generates a
configuration plot using matplotlib must be defined and associated with the system. Below a plot is created to show an
orange block representing the mass and a spring attached to the block. The spring() function conveniently provides
the x and y data needed to plot the spring.

2.3. Adding measurements 17

resonance Documentation, Release 0.23.0.dev0

import matplotlib.pyplot as plt
from resonance.functions import spring

create a new constant to describe the block's dimension, l
msd_sys.constants['l'] = 0.2 # m

def create_configuration_figure(x, l):

create a figure with one or more axes
fig, ax = plt.subplots()

the `spring()` function creates the x and y data for plotting a simple
spring
spring_x_data, spring_y_data = spring(0.0, x, l/2, l/2, l/8, n=3)
lines = ax.plot(spring_x_data, spring_y_data, color='purple')
spring_line = lines[0]

add a square that represents the mass
square = plt.Rectangle((x, 0.0), width=l, height=l, color='orange')
ax.add_patch(square)

add a vertical line representing the spring's attachment point
ax.axvline(0.0, linewidth=4.0, color='black')

set axis limits and aspect ratio such that the entire motion will appear
ax.set_ylim((-l/2, 3*l/2))
ax.set_xlim((-np.abs(x) - l, np.abs(x) + l))
ax.set_aspect('equal')

ax.set_xlabel('x [m]')
ax.set_ylabel('y [m]')

this function must return the figure as the first item
but you also may return any number of objects that you'd like to have
access to modify, e.g. for an animation update

return fig, ax, spring_line, square

associate the function with the system
msd_sys.config_plot_func = create_configuration_figure

Now the configuration plot can be generated with plot_configuration(). This returns the same results as the
function defined above.

fig, ax, spring_line, square = msd_sys.plot_configuration()

18 Chapter 2. Creating and Exercising a Custom Single Degree of Freedom System

resonance Documentation, Release 0.23.0.dev0

2.5 Animating the configuration

Reset to un-damped motion and simulate again

msd_sys.constants['zeta'] = 0.1
trajectories = msd_sys.free_response(5.0)

To animate the configuration, create a function that updates the various matplotlib objects using any constants, coor-
dinates, speeds, and/or the special variable time. The last input arguments to this function must be all of the extra
outputs of plot_configuration() (excluding the figure which is the first output). The order of these must match
the order of the plot_configuration() outputs.

def update_configuration(x, l, time, # any variables you need for updating
ax, spring_line, square): # returned items from plot_

→˓configuration() in same order

ax.set_title('{:1.2f} [s]'.format(time))

xs, ys = spring(0.0, x, l/2, l/2, l/8, n=3)
spring_line.set_data(xs, ys)

square.set_xy((x, 0.0))

msd_sys.config_plot_update_func = update_configuration

Now that the update function is associated, animate_configuration() will create the animation. Here the
frames-per-second are set to an explicit value.

animation = msd_sys.animate_configuration(fps=30)

If using the notebook interactively with %matplotlib widget set, the animation above will play. But
animate_configuration() returns a matplotlib FuncAnimation object which has other options that allow
the generation of different formats, see https://matplotlib.org/api/_as_gen/matplotlib.animation.FuncAnimation.html
for options. One option is to create a Javascript/HTML versions that displays nicely in the notebook with different
play options:

from IPython.display import HTML

HTML(animation.to_jshtml(fps=30))

2.5. Animating the configuration 19

https://matplotlib.org/api/_as_gen/matplotlib.animation.FuncAnimation.html

resonance Documentation, Release 0.23.0.dev0

2.6 Response to sinusoidal forcing

The response to a sinusoidal forcing input, i.e.:

𝑚�̇� + 𝑐𝑣 + 𝑘𝑥 = 𝐹𝑜 sin(𝜔𝑡)

can be simulated with sinusoidal_forcing_response(). This works the same as free_response except
it requires a forcing amplitude and frequency.

msd_sys.coordinates['x'] = 0.0 # m
msd_sys.speeds['v'] = 0.0 # m/s

Fo = 10.0
omega = 2*np.pi*3.0 # rad/s

forced_trajectory = msd_sys.sinusoidal_forcing_response(Fo, omega, 5.0)

Note that there is now a forcing_function column. This is the applied forcing function.

forced_trajectory

The trajectories can be plotted and animated as above:

axes = forced_trajectory.plot(subplots=True)

fps = 30
animation = msd_sys.animate_configuration(fps=fps)

20 Chapter 2. Creating and Exercising a Custom Single Degree of Freedom System

resonance Documentation, Release 0.23.0.dev0

HTML(animation.to_jshtml(fps=fps))

2.7 Frequency response

The frequency response to sinusoidal forcing at different frequencies can be plotted with
frequency_response_plot() for a specific forcing amplitude.

axes = msd_sys.frequency_response_plot(Fo)

2.7. Frequency response 21

resonance Documentation, Release 0.23.0.dev0

2.8 Response to periodic forcing

Any periodic forcing function can be applied given the Fourier series coefficients of the approximating function. The
following function calculates the Fourier series coefficients for a “sawtooth” shaped periodic input.

def sawtooth_fourier_coeffs(A, N):
"""
A : sawtooth amplitude, Newtons
T : sawtooth period, seconds
N : number of Fourier series terms
"""
n = np.arange(1, N+1)
an = A*(8*(-1)**n - 8) / 2 / np.pi**2 / n**2
return 0, an, np.zeros_like(an)

a0, an, bn = sawtooth_fourier_coeffs(Fo, 20)

These coefficients can be provided to periodic_forcing_response() to simulate the response:

wb = 2*np.pi*3.0 # rad/s

trajectory = msd_sys.periodic_forcing_response(a0, an, bn, wb, 5.0)
trajectory

axes = trajectory.plot(subplots=True)

22 Chapter 2. Creating and Exercising a Custom Single Degree of Freedom System

resonance Documentation, Release 0.23.0.dev0

fps = 30
animation = msd_sys.animate_configuration(fps=fps)

HTML(animation.to_jshtml(fps=fps))

2.8. Response to periodic forcing 23

resonance Documentation, Release 0.23.0.dev0

24 Chapter 2. Creating and Exercising a Custom Single Degree of Freedom System

CHAPTER 3

API

3.1 resonance/system.py

class resonance.system.System
This is the abstract base class for any single or multi degree of freedom system. It can be sub-classed to make a
custom system or the necessary methods can be added dynamically.

add_measurement(name, func)
Creates a new measurement entry in the measurements attribute that uses the provided function to compute
the measurement given a subset of the constants, coordinates, speeds, other measurements, and time.

Parameters

• name (string) – This must be a valid Python variable name and it should not clash with
any names in the constants, coordinates, or speeds dictionary. This string can be different
that the function name.

• func (function) – This function must only have existing constant, coordinate, speed,
or measurement names, and/or the special name 'time' in the function signature. These
can be a subset of the available choices in constants, coordinates, speeds, measurements
and any order in the signature is permitted. The function must be able to operate on both
inputs that are a collection of floats or a collection of equal length 1D NumPy arrays and
floats, i.e. the function must be vectorized. So be sure to use NumPy vectorized functions
inside your function, i.e. numpy.sin() instead of math.sin(). The measurement
function you create should return a item, either a scalar or array, that gives the values of
the measurement.

Examples

>>> import numpy as np
>>> from resonance.linear_systems import SingleDoFLinearSystem
>>> sys = SingleDoFLinearSystem()
>>> sys.constants['m'] = 1.0 # kg

(continues on next page)

25

resonance Documentation, Release 0.23.0.dev0

(continued from previous page)

>>> sys.constants['c'] = 0.2 # kg*s
>>> sys.constants['k'] = 10.0 # N/m
>>> sys.coordinates['x'] = 1.0 # m
>>> sys.speeds['v'] = 0.25 # m/s
>>> def can_coeffs(m, c, k):
... return m, c, k
...
>>> sys.canonical_coeffs_func = can_coeffs
>>> def force(x, v, c, k, time):
... return -k * x - c * v + 5.0 * time
...
>>> # The measurement function you create must be vectorized, such
>>> # that it works with both floats and 1D arrays. For example with
>>> # floats:
>>> force(1.0, 0.5, 0.2, 10.0, 0.1)
-9.6
>>> # And with 1D arrays:
>>> force(np.array([1.0, 1.0]), np.array([0.25, 0.25]), 0.2, 10.0,
... np.array([0.1, 0.2]))
array([-9.55, -9.05])
>>> sys.add_measurement('f', force)
>>> sys.measurements['f'] # time is 0.0 by default
-10.05
>>> sys.constants['k'] = 20.0 # N/m
>>> sys.measurements['f']
-20.05
>>> # Note that you should use NumPy functions to ensure your
>>> # measurement is vectorized.
>>> def force_mag(force):
... return np.abs(force)
...
>>> force_mag(-10.05)
10.050000000000001
>>> force_mag(np.array([-10.05, -20.05]))
array([10.05, 20.05])
>>> sys.add_measurement('fmag', force_mag)
>>> sys.measurements['fmag']
20.05

animate_configuration(fps=30, **kwargs)
Returns a matplotlib animation function based on the configuration plot and the configuration plot update
function.

Parameters

• fps (integer) – The frames per second that should be displayed in the animation. The
latest trajectory will be resampled via linear interpolation to create the correct number of
frames. Note that the frame rate will depend on the CPU speed of the computer. You’ll
likely have to adjust this by trial and error to get something that matches well for your
computer if you want the animation to run in real time.

• **kwargs – Any extra keyword arguments will be passed to matplotlib.
animation.FuncAnimation(). The interval keyword argument will be ig-
nored.

config_plot_func
The configuration plot function arguments should be any of the system’s constants, coordinates, measure-
ments, or 'time'. No other arguments are valid. The function has to return the matplotlib figure as the

26 Chapter 3. API

resonance Documentation, Release 0.23.0.dev0

first item but can be followed by any number of mutable matplotlib objects that you may want to change
during an animation. Refer to the matplotlib documentation for tips on creating figures.

Examples

>>> sys = SingleDoFLinearSystem()
>>> sys.constants['radius'] = 5.0
>>> sys.constants['center_y'] = 10.0
>>> sys.coordinates['center_x'] = 0.0
>>> def plot(radius, center_x, center_y, time):
... fig, ax = plt.subplots(1, 1)
... circle = Circle((center_x, center_y), radius=radius)
... ax.add_patch(circle)
... ax.set_title(time)
... return fig, circle, ax
...
>>> sys.config_plot_function = plot
>>> sys.plot_configuration()

config_plot_update_func
The configuration plot update function arguments should be any of the system’s constants, coordinates,
measurements, or ‘time’ in any order with the returned values from the config_plot_func as the
last arguments in the exact order as in the configuration plot return statement. No other arguments are
valid. Nothing need be returned from the function. See the matplotlib animation documentation for tips
on creating these update functions.

Examples

>>> sys = SingleDoFLinearSystem()
>>> sys.constants['radius'] = 5.0
>>> sys.constants['center_y'] = 10.0
>>> sys.coordinates['center_x'] = 0.0
>>> def plot(radius, center_x, center_y, time):
... fig, ax = plt.subplots(1, 1)
... circle = Circle((center_x, center_y), radius=radius)
... ax.add_patch(circle)
... ax.set_title(time)
... return fig, circle, ax
...
>>> sys.config_plot_function = plot
>>> def update(center_y, center_x, time, circle, ax):
... # NOTE : that circle and ax have to be the last arguments and be
... # in the same order as returned from plot()
... circle.set_xy((center_x, center_y))
... ax.set_title(time)
...
>>> sys.config_plot_update_func = update
>>> sys.animate_configuration()

constants
A dictionary containing the all of the system’s constants, i.e. parameters that do not vary with time.

3.1. resonance/system.py 27

resonance Documentation, Release 0.23.0.dev0

Examples

>>> sys = System()
>>> sys.constants
{}
>>> sys.constants['mass'] = 5.0
>>> sys.constants
{'mass': 5.0}
>>> del sys.constants['mass']
>>> sys.constants
{}
>>> sys.constants['mass'] = 5.0
>>> sys.constants['length'] = 10.0
>>> sys.constants
{'mass': 5.0, 'length': 10.0}

coordinates
A dictionary containing the system’s generalized coordinates, i.e. coordinate parameters that vary with
time. These values will be used as initial conditions in simulations.

Examples

>>> sys = System()
>>> sys.coordinates['angle'] = 0.0
>>> sys.coordinates
{'angle': 0.0}

free_response(final_time, initial_time=0.0, sample_rate=100, integrator=’rungakutta4’,
**kwargs)

Returns a data frame with monotonic time values as the index and columns for each coordinate and mea-
surement at the time value for that row. Note that this data frame is stored on the system as the variable
.result until this method is called again, which will overwrite it.

Parameters

• final_time (float) – A value of time in seconds corresponding to the end of the
simulation.

• initial_time (float, optional) – A value of time in seconds corresponding to
the start of the simulation.

• sample_rate (integer, optional) – The sample rate of the simulation in Hertz
(samples per second). The time values will be reported at the initial time and final time,
i.e. inclusive, along with times space equally based on the sample rate.

• integrator (string, optional) – Either rungakutta4 or lsoda. The
rungakutta4 option is a very simple implementation and the sample_rate directly
affects the accuracy and quality of the result. The lsoda makes use of SciPy’s odeint
function which switches between two integrators for stiff and non-stiff portions of the sim-
ulation and is variable step so the sample rate does not affect the quality and accuracy of
the result. This has no affect on single degree of freedom linear systems, as their solutions
are computed analytically.

Returns df – A data frame indexed by time with all of the coordinates and measurements as
columns.

Return type pandas.DataFrame

28 Chapter 3. API

resonance Documentation, Release 0.23.0.dev0

measurements
A dictionary containing the all of the system’s measurements, i.e. parameters that are functions of the
constants, coordinates, speeds, and other measurements.

plot_configuration()
Returns a matplotlib figure generated by the function assigned to the config_plot_func attribute.
You may need to call matplotlib.pyplot.show() to display the figure.

Returns

• fig (matplotlib.figure.Figure) – The first returned object is always a figure.

• *args (matplotlib objects) – Any matplotlib objects can be returned after the figure.

speeds
A dictionary containing the system’s generalized speeds, i.e. speed parameters that vary with time. These
values will be used as initial conditions in simulations.

Examples

>>> sys = System()
>>> sys.speeds['angle_vel'] = 0.0
>>> sys.speeds
{'angle_vel': 0.0}

states
An ordered dictionary containing the system’s state variables and values. The coordinates are always
ordered before the speeds and the individual order of the values depends on the order they were added to
coordinates and speeds.

Examples

>>> sys = System()
>>> sys.coordinates['angle'] = 0.2
>>> sys.speeds['angle_vel'] = 0.1
>>> sys.states
{'angle': 0.2, 'angle_vel': 0.1}
>>> list(sys.states.keys())
['angle', 'angle_vel']
>>> list(sys.states.values())
[0.2, 0.1]

3.2 resonance/linear_systems.py

class resonance.linear_systems.AutomobileLateralSystem
Bases: resonance.linear_systems.MultiDoFLinearSystem

class resonance.linear_systems.BallChannelPendulumSystem
Bases: resonance.linear_systems.MultiDoFLinearSystem

class resonance.linear_systems.BaseExcitationSystem
Bases: resonance.linear_systems.SingleDoFLinearSystem

This system represents a mass connected to a moving massless base via a spring and damper in parallel. The
motion of the mass is subject to viscous damping. The system is described by:

3.2. resonance/linear_systems.py 29

resonance Documentation, Release 0.23.0.dev0

constants

mass, m [kg] The suspended mass.

damping, c [kg / s] The viscous linear damping coefficient which represents any energy dissipation from
things like air resistance, friction, etc.

stiffness, k [N / m] The linear elastic stiffness of the spring.

coordinates

position, x [m] The absolute position of the mass.

speeds

velocity, x_dot [m / s] The absolute velocity of the mass.

periodic_base_displacing_response(twice_avg, cos_coeffs, sin_coeffs, frequency, fi-
nal_time, initial_time=0.0, sample_rate=100,
force_col_name=’forcing_function’, dis-
place_col_name=’displacing_function’)

Returns the trajectory of the system’s coordinates, speeds, accelerations, and measurements if a periodic
function defined by a Fourier series is applied as displacement of the base in the same direction as the
system’s coordinate. The displacing function is defined as:

N
y(t) = a0 / 2 + (an * cos(n*𝜔*t) + bn * sin(n*𝜔*t))

n=1

Where a0, a1. . . an, and b1. . . bn are the Fourier coefficients. If N=∞ then the Fourier series can describe
any periodic function with a period (2*𝜋)/𝜔.

Parameters

• twice_avg (float) – Twice the average value over one cycle, a0.

• cos_coeffs (float or sequence of floats) – The N cosine Fourier coeffi-
cients: a1, . . . , aN.

• sin_coeffs (float or sequence of floats) – The N sine Fourier coeffi-
cients: b1, . . . , bN.

• frequency (float) – The frequency, 𝜔, in radians per second corresponding to one
full cycle of the function.

• final_time (float) – A value of time in seconds corresponding to the end of the
simulation.

• initial_time (float, optional) – A value of time in seconds corresponding to
the start of the simulation.

• sample_rate (integer, optional) – The sample rate of the simulation in Hertz
(samples per second). The time values will be reported at the initial time and final time,
i.e. inclusive, along with times space equally based on the sample rate.

• force_col_name (string, optional) – A valid Python identifier that will be
used as the column name for the forcing function trajectory in the returned data frame.

• displace_col_name (string, optional) – A valid Python identifier that will
be used as the column name for the forcing function trajectory in the returned data frame.

Returns A data frame indexed by time with all of the coordinates, speeds, measurements, and
forcing/displacing functions as columns.

Return type pandas.DataFrame

30 Chapter 3. API

resonance Documentation, Release 0.23.0.dev0

sinusoidal_base_displacing_response(amplitude, frequency, final_time, ini-
tial_time=0.0, sample_rate=100,
force_col_name=’forcing_function’, dis-
place_col_name=’displacing_function’)

Returns the trajectory of the system’s coordinates, speeds, accelerations, and measurements if a sinusoidal
displacement function described by:

y(t) = Y * sin(𝜔*t)

is specified for the movement of the base in the direction of the system’s coordinate.

Parameters

• amplitude (float) – The amplitude of the displacement function, Y, in meters.

• frequency (float) – The frequency, 𝜔, in radians per second of the sinusoidal dis-
placement.

• final_time (float) – A value of time in seconds corresponding to the end of the
simulation.

• initial_time (float, optional) – A value of time in seconds corresponding to
the start of the simulation.

• sample_rate (integer, optional) – The sample rate of the simulation in Hertz
(samples per second). The time values will be reported at the initial time and final time,
i.e. inclusive, along with times space equally based on the sample rate.

• force_col_name (string, optional) – A valid Python identifier that will be
used as the column name for the forcing function trajectory in the returned data frame.

• displace_col_name (string, optional) – A valid Python identifier that will
be used as the column name for the forcing function trajectory in the returned data frame.

Returns A data frame indexed by time with all of the coordinates and measurements as columns.

Return type pandas.DataFrame

class resonance.linear_systems.BicycleSystem
Bases: resonance.linear_systems.MultiDoFLinearSystem

class resonance.linear_systems.BookOnCupSystem
Bases: resonance.linear_systems.SingleDoFLinearSystem

This system represents dynamics of a typical engineering textbook set atop a cylinder (a coffee cup) such that
the book can vibrate without slip on the curvature of the cup. It is described by:

constants

thickness, t [meters] the thickness of the book

length, l [meters] the length of the edge of the book which is tangent to the cup’s surface

mass, m [kilograms] the mass of the book

radius, r [meters] the outer radius of the cup

coordinates

book_angle, theta [radians] the angle of the book with respect to the gravity vector

speeds

book_angle_vel, theta [radians] the angular rate of the book with respect to the gravity vector

3.2. resonance/linear_systems.py 31

resonance Documentation, Release 0.23.0.dev0

class resonance.linear_systems.ClockPendulumSystem
Bases: resonance.linear_systems.SingleDoFLinearSystem

This system represents dynamics of a simple compound pendulum in which a rigid body is attached via a
revolute joint to a fixed point. Gravity acts on the pendulum to bring it to an equilibrium state and there is no
friction in the joint. It is described by:

constants

pendulum_mass, m [kg] The mass of the compound pendulum.

inertia_about_joint, i [kg m**2] The moment of inertia of the compound pendulum about the revolute
joint.

joint_to_mass_center, l [m] The distance from the revolute joint to the mass center of the compound
pendulum.

acc_due_to_gravity, g [m/s**2] The acceleration due to gravity.

coordinates

angle, theta [rad] The angle of the pendulum relative to the direction of gravity. When theta is zero the
pendulum is hanging down in it’s equilibrium state.

speeds

angle_vel, theta_dot [rad / s] The angular velocity of the pendulum about the revolute joint axis.

class resonance.linear_systems.CompoundPendulumSystem
Bases: resonance.linear_systems.SingleDoFLinearSystem

This system represents dynamics of a simple compound pendulum in which a rigid body is attached via a
revolute joint to a fixed point. Gravity acts on the pendulum to bring it to an equilibrium state and there is no
friction in the joint. It is described by:

constants

pendulum_mass, m [kg] The mass of the compound pendulum.

inertia_about_joint, i [kg m**2] The moment of inertia of the compound pendulum about the revolute
joint.

joint_to_mass_center, l [m] The distance from the revolute joint to the mass center of the compound
pendulum.

acc_due_to_gravity, g [m/s**2] The acceleration due to gravity.

coordinates

angle, theta [rad] The angle of the pendulum relative to the direction of gravity. When theta is zero the
pendulum is hanging down in it’s equilibrium state.

speeds

angle_vel, theta_dot [rad / s] The angular velocity of the pendulum about the revolute joint axis.

class resonance.linear_systems.FourStoryBuildingSystem
Bases: resonance.linear_systems.MultiDoFLinearSystem

class resonance.linear_systems.MassSpringDamperSystem
Bases: resonance.linear_systems.SingleDoFLinearSystem

This system represents dynamics of a mass connected to a spring and damper (dashpot). The mass moves
horizontally without friction and is acted on horizontally by the spring and damper in parallel. The system is
described by:

32 Chapter 3. API

resonance Documentation, Release 0.23.0.dev0

constants

mass, M [kg] The system mass.

damping, C [kg / s] The viscous linear damping coefficient which represents any energy dissipation from
things like air resistance, slip, etc.

stiffness, K [N / m] The linear elastic stiffness of the spring.

coordinates
position, x [m]

speeds
velocity, x_dot [m / s]

class resonance.linear_systems.MultiDoFLinearSystem
Bases: resonance.nonlinear_systems.MultiDoFNonLinearSystem

This is the abstract base class for any multi degree of freedom linear system. It can be sub-classed to make a
custom system or the necessary methods can be added dynamically.

canonical_coefficients()
Returns the mass, damping, and stiffness matrices in that order.

canonical_coeffs_func
A function that returns the three linear coefficient matrices of the left hand side of a set of canonical second
order ordinary differential equations. This equation looks like the following:

Mv’ + Cv + Kx = F(t)

where:

• M: mass matrix

• C: damping matrix

• K: stiffness matrix

• x: the generalized coordinate vector

• v: the generalized speed vector

The coefficients M, C, and K must be defined in terms of the system’s constants.

Example

This is an example of a simple double pendulum linearized about its equilibrium.

>>> sys = MulitDoFLinearSystem()
>>> sys.constants['g'] = 9.8 # m/s**2
>>> sys.constants['l1'] = 1.0 # m
>>> sys.constants['l2'] = 1.0 # m
>>> sys.constnats['m1'] = 0.5 # kg
>>> sys.constnats['m2'] = 0.5 # kg
>>> sys.coordinates['theta1'] = 0.3 # rad
>>> sys.coordinates['theta2'] = 0.0 # rad
>>> sys.speeds['omega1'] = 0.0 # rad/s
>>> sys.speeds['omega2'] = 0.0 # rad/s
>>> def coeffs(m1, m2, l1, l2, g):
... # Represents a linear model of a simple double pendulum
... M = np.array([[l1 * (m1 + m2), m2 * l2],
... [m2 * l2, m2 * l1]])

(continues on next page)

3.2. resonance/linear_systems.py 33

resonance Documentation, Release 0.23.0.dev0

(continued from previous page)

... C = 0.0

... K = np.array([[-g * (m1 + m2), 0],

... [0, -m2 * g]])

... return M, C, K
>>> sys.canonical_coeffs_func = coeffs

forced_response(final_time, initial_time=0.0, sample_rate=100, integrator=’rungakutta4’,
**kwargs)

Returns a data frame with monotonic time values as the index and columns for each coordinate and mea-
surement at the time value for that row. Note that this data frame is stored on the system as the variable
result until this method is called again, which will overwrite it.

Parameters

• final_time (float) – A value of time in seconds corresponding to the end of the
simulation.

• initial_time (float, optional) – A value of time in seconds corresponding to
the start of the simulation.

• sample_rate (integer, optional) – The sample rate of the simulation in Hertz
(samples per second). The time values will be reported at the initial time and final time,
i.e. inclusive, along with times space equally based on the sample rate.

• integrator (string, optional) – Either rungakutta4 or lsoda. The
rungakutta4 option is a very simple implementation and the sample_rate directly
affects the accuracy and quality of the result. The lsoda makes use of SciPy’s odeint
function which switches between two integrators for stiff and non-stiff portions of the sim-
ulation and is variable step so the sample rate does not affect the quality and accuracy of
the result. This has no affect on single degree of freedom linear systems, as their solutions
are computed analytically.

Returns df – A data frame indexed by time with all of the coordinates and measurements as
columns.

Return type pandas.DataFrame

Notes

You must have defined a forcing_func for this to execute. If there is no forcing function this will
return the free response.

forcing_func
A function that returns the right hand side forcing vector of the canonical second order linear ordinary
differential equations. This equation looks like the following:

Mv’ + Cv + Kx = F(t)

where:

• M: mass matrix

• C: damping matrix

• K: stiffness matrix

• x: the generalized coordinate vector

• v: the generalized speed vector

The coefficients M, C, and K must be defined in terms of the system’s constants.

34 Chapter 3. API

resonance Documentation, Release 0.23.0.dev0

Example

This is an example of a simple double pendulum linearized about its equilibrium. The angles, theta1
and theta2, are defined relative to the vertical and when both are zero the pendulum is in its hanging
equilibrium. The forcing function applies sinusoidal torquing with respect to theta1 and theta2.

>>> sys = MulitDoFLinearSystem()
>>> sys.constants['g'] = 9.8 # m/s**2
>>> sys.constants['l1'] = 1.0 # m
>>> sys.constants['l2'] = 1.0 # m
>>> sys.constants['m1'] = 0.5 # kg
>>> sys.constants['m2'] = 0.5 # kg
>>> sys.coordinates['theta1'] = 0.3 # rad
>>> sys.coordinates['theta2'] = 0.0 # rad
>>> sys.speeds['omega1'] = 0.0 # rad/s
>>> sys.speeds['omega2'] = 0.0 # rad/s
>>> def coeffs(m1, m2, l1, l2, g):
... # Represents a linear model of a simple double pendulum
... M = np.array([[l1 * (m1 + m2), m2 * l2],
... [m2 * l2, m2 * l1]])
... C = np.zeros_like(M)
... K = np.array([[-g * (m1 + m2), 0],
... [0, -m2 * g]])
... return M, C, K
>>> sys.canonical_coeffs_func = coeffs
>>> sys.constants['To'] = 1.0 # Nm
>>> sys.constants['beta'] = 0.01 # rad/s
>>> def forcing(To, beta, time):
... T1 = To * np.cos(beta * time)
... T2 = To * np.sin(beta * time)
... return T1, T2
...
>>> sys.forcing_func = forcing

class resonance.linear_systems.SimplePendulumSystem
Bases: resonance.linear_systems.SingleDoFLinearSystem

This system represents dynamics of a simple pendulum in which a point mass is fixed on a massless pendulum
arm of some length to a revolute joint. Gravity acts on the pendulum to bring it to an equilibrium state and there
is no friction in the joint. It is described by:

constants

pendulum_mass, m [kg] The mass of the compound pendulum.

pendulum_length, l [m] The distance from the revolute joint to the point mass location.

acc_due_to_gravity, g [m/s**2] The acceleration due to gravity.

coordinates

angle, theta [rad] The angle of the pendulum relative to the direction of gravity. When theta is zero the
pendulum is hanging down in it’s equilibrium state.

speeds

angle_vel, theta_dot [rad / s] The angular velocity of the pendulum about the revolute joint axis.

class resonance.linear_systems.SimpleQuarterCarSystem
Bases: resonance.linear_systems.BaseExcitationSystem

3.2. resonance/linear_systems.py 35

resonance Documentation, Release 0.23.0.dev0

This system represents a mass connected to a moving massless base via a spring and damper in parallel. The
motion of the mass is subject to viscous damping. The system is described by:

constants

mass, m [kg] The suspended mass.

damping, c [kg / s] The viscous linear damping coefficient which represents any energy dissipation from
things like air resistance, friction, etc.

stiffness, k [N / m] The linear elastic stiffness of the spring.

coordinates

position, x [m] The absolute position of the mass.

speeds

velocity, x_dot [m / s] The absolute velocity of the mass.

class resonance.linear_systems.SingleDoFLinearSystem
Bases: resonance.linear_systems._LinearSystem

This is the abstract base class for any single degree of freedom linear system. It can be sub-classed to make a
custom system or the necessary methods can be added dynamically.

frequency_response(frequencies, amplitude)
Returns the amplitude and phase shift for simple sinusoidal forcing of the system. The first holds the
plot of the coordinate’s amplitude as a function of forcing frequency and the second holds a plot of the
coordinate’s phase shift with respect to the forcing function.

Parameters

• frequencies (array_like, shape(n,)) –

• amplitude (float) – The value of the forcing amplitude.

Returns

• amp_curve (ndarray, shape(n,)) – The amplitude values of the coordinate at different
frequencies.

• phase_curve (ndarray, shape(n,)) – The phase shift values in radians of the coordinate
relative to the forcing.

frequency_response_plot(amplitude, log=False, axes=None)
Returns an array of two matplotlib axes. The first holds the plot of the coordinate’s amplitude as a function
of forcing frequency and the second holds a plot of the coordinate’s phase shift with respect to the forcing
function.

Parameters

• amplitude (float) – The value of the forcing amplitude.

• log (boolean, optional) – If True, the amplitude will be plotted on a semi-log Y
plot.

period()
Returns the (damped) period of oscillation of the coordinate in seconds.

periodic_forcing_response(twice_avg, cos_coeffs, sin_coeffs, frequency, final_time, ini-
tial_time=0.0, sample_rate=100, col_name=’forcing_function’)

Returns the trajectory of the system’s coordinates, speeds, accelerations, and measurements if a periodic
forcing function defined by a Fourier series is applied as a force or torque in the same direction as the
system’s coordinate. The forcing function is defined as:

36 Chapter 3. API

resonance Documentation, Release 0.23.0.dev0

N
F(t) or T(t) = a0 / 2 + (an * cos(n*𝜔*t) + bn * sin(n*𝜔*t))

n=1

Where a0, a1. . . an, and b1. . . bn are the Fourier coefficients. If N=∞ then the Fourier series can describe
any periodic function with a period (2*𝜋)/𝜔.

Parameters

• twice_avg (float) – Twice the average value over one cycle, a0.

• cos_coeffs (float or sequence of floats) – The N cosine Fourier coeffi-
cients: a1, . . . , aN.

• sin_coeffs (float or sequence of floats) – The N sine Fourier coeffi-
cients: b1, . . . , bN.

• frequency (float) – The frequency, 𝜔, in radians per second corresponding to one
full cycle of the function.

• final_time (float) – A value of time in seconds corresponding to the end of the
simulation.

• initial_time (float, optional) – A value of time in seconds corresponding to
the start of the simulation.

• sample_rate (integer, optional) – The sample rate of the simulation in Hertz
(samples per second). The time values will be reported at the initial time and final time,
i.e. inclusive, along with times space equally based on the sample rate.

• col_name (string, optional) – A valid Python identifier that will be used as the
column name for the forcing function trajectory in the returned data frame.

Returns A data frame indexed by time with all of the coordinates and measurements as columns.

Return type pandas.DataFrame

sinusoidal_forcing_response(amplitude, frequency, final_time, initial_time=0.0, sam-
ple_rate=100, col_name=’forcing_function’)

Returns the trajectory of the system’s coordinates, speeds, accelerations, and measurements if a sinusoidal
forcing (or torquing) function defined by:

F(t) = Fo * cos(𝜔 * t)

or

T(t) = To * cos(𝜔 * t)

is applied to the moving body in the direction of the system’s coordinate.

Parameters

• amplitude (float) – The amplitude of the forcing/torquing function, Fo or To, in
Newtons or Newton-Meters.

• frequency (float) – The frequency, 𝜔, in radians per second of the sinusoidal forcing.

• final_time (float) – A value of time in seconds corresponding to the end of the
simulation.

• initial_time (float, optional) – A value of time in seconds corresponding to
the start of the simulation.

3.2. resonance/linear_systems.py 37

resonance Documentation, Release 0.23.0.dev0

• sample_rate (integer, optional) – The sample rate of the simulation in Hertz
(samples per second). The time values will be reported at the initial time and final time,
i.e. inclusive, along with times space equally based on the sample rate.

• col_name (string, optional) – A valid Python identifier that will be used as the
column name for the forcing function trajectory in the returned data frame.

Returns A data frame indexed by time with all of the coordinates and measurements as columns.

Return type pandas.DataFrame

class resonance.linear_systems.TorsionalPendulumSystem
Bases: resonance.linear_systems.SingleDoFLinearSystem

This system represents dynamics of a simple torsional pendulum in which the torsionally elastic member’s axis
is aligned with gravity and the axis of the torsion member passes through the mass center of an object attached
to it’s lower end. The top of the torsion rod is rigidly attached to the “ceiling”. It is described by:

constants

rotational_inertia, I [kg m**2] The moment of inertia of the object attached to the pendulum.

torsional_damping, C [N s / m] The viscous linear damping coefficient which represents any energy dis-
sipation from things like air resistance, slip, etc.

torsional_stiffness, K [N / m] The linear elastic stiffness coefficient of the torsion member, typically a
round slender rod.

coordinates
torsional_angle, theta [rad]

speeds
torsional_angle_vel, theta_dot [rad / s]

3.3 resonance/nonlinear_systems.py

class resonance.nonlinear_systems.BallChannelPendulumSystem
Bases: resonance.nonlinear_systems.MultiDoFNonLinearSystem

class resonance.nonlinear_systems.ClockPendulumSystem
Bases: resonance.nonlinear_systems.SingleDoFNonLinearSystem

This system represents dynamics of a compound pendulum representing a clock pendulum. It is made up of
a thin long cylindrical rod with a thin disc bob on the end. Gravity acts on the pendulum to bring it to an
equilibrium state and there is option Coulomb friction in the joint. It is described by:

constants

bob_mass, m_b [kg] The mass of the bob (a thin disc) on the end of the pendulum.

bob_radius, r [m] The radius of the bob (a thin disc) on the end of the pendulum.

rod_mass, m_r [kg] The mass of the then cylindrical rod.

rod_length, l [m] The length of the rod which connects the pivot joint to the center of the bob.

coeff_of_friction, mu [unitless] The Coulomb coefficient of friction between the materials of the pivot
joint.

joint_friction_radius, R [m] The radius of the contact disc at the pivot joint. The joint is assumed to be
two flat discs pressed together.

joint_clamp_force, F_N [N] The clamping force pressing the two flat discs together at the pivot joint.

38 Chapter 3. API

resonance Documentation, Release 0.23.0.dev0

acc_due_to_gravity, g [m/s**2] The acceleration due to gravity.

coordinates

angle, theta [rad] The angle of the pendulum relative to the direction of gravity. When theta is zero the
pendulum is hanging down in it’s equilibrium state.

speeds

angle_vel, theta_dot [rad / s] The angular velocity of the pendulum about the revolute joint axis.

class resonance.nonlinear_systems.MultiDoFNonLinearSystem
Bases: resonance.system.System

This is the abstract base class for any single degree of freedom nonlinear system. It can be sub-classed to make
a custom system or the necessary methods can be added dynamically.

diff_eq_func
A function that returns the time derivatives of the coordinates and speeds, i.e. computes the right hand side
of the explicit first order differential equations. This equation looks like the following for linear motion:

dx
-- = f(t, q1, ..., qn, u1, ..., un, p1, p2, ..., pO)
dt

where:

• x: [q1, . . . , qn, u1, . . . , un], the “state vector”

• t: a time value

• q: the coordinates

• u: the speeds

• p: any number of constants, O is the number of constants

Your function should be able to operate on 1d arrays as inputs, i.e. use numpy math functions in your
function, e.g. numpy.sin instead of math.sin. Besides the constants, coordinates, and speeds, there
is a special variable time that you can use to give the current value of time inside your function.

Note: The function has to return the derivatives of the states in the order of the state attribute.

Warning: Do not use measurements as a function argument. This may cause causality issues and is
not yet supported. You are unlikely to get a correct answer if you use a measurement in this function.

Example

>>> sys = SingleDoFNonLinearSystem()
>>> sys.constants['gravity'] = 9.8 # m/s**2
>>> sys.constants['length'] = 1.0 # m
>>> sys.constants['mass'] = 0.5 # kg
>>> sys.constants['omega_b'] = 0.1 # rad/s
>>> sys.coordinates['theta'] = 0.3 # rad
>>> sys.speeds['omega'] = 0.0 # rad/s
>>> sys.states
{'theta': 0.3, 'omega': 0.0} # note the order!

(continues on next page)

3.3. resonance/nonlinear_systems.py 39

resonance Documentation, Release 0.23.0.dev0

(continued from previous page)

>>> def rhs(theta, omega, gravity, length, mass, omega_b, time):
... # Represents a linear model of a simple pendulum under
... # sinusoidal torquing.
... # m * l**2 𝜔' + m * g * l * sin(𝜃) = sin(𝜔_b * t)
... thetad = omega
... omegad = (np.sin(omega_b * time) -
... m*g*l*np.sin(theta)) / m / l**2
... return thetad, omegad # in order of sys.states
>>> sys.diff_eq_func = rhs

class resonance.nonlinear_systems.SingleDoFNonLinearSystem
Bases: resonance.nonlinear_systems.MultiDoFNonLinearSystem

3.4 resonance/functions.py

class resonance.functions.Phasor(init, frequency=0, growth_rate=0)
Phasor that can be advanced in time with rotation and growth rates.

Parameters

• init (complex) – Initial phasor in rectangular form (Re + jIm)

• frequency (float, optional) – Rotation rate in rad/s.

• growth_rate (float, optional) – Exponential growth rate (decay if < 0).

t
Current time.

Type float

re
Current real component of the phasor.

Type float

im
Current imaginary component of the phasor.

Type float

radius
Current radius of the phasor.

Type float

angle
Current angle of the phasor.

Type float

trace_t
History of time values (since most recent clear()).

Type list

trace_re
History of real component values (since most recent clear()).

Type list

40 Chapter 3. API

resonance Documentation, Release 0.23.0.dev0

trace_im
History of imaginary component values (since most recent clear()).

Type list

advance(dt)
Advance the phasor by a time step dt.

clear()
Clear trajectories.

classmethod from_eig(eigvec_component, eigval)
Creates a phasor from an eigenvalue/eigenvector component pair.

Parameters

• eigvec_component (complex) – A single eigenvector component representing the
phasor’s initial real/imaginary parts.

• eigval (complex) – The eigenvector, which specifies the phasor’s growth rate (real
part) and rotational frequency (imaginary part).

class resonance.functions.PhasorAnimation(fig, t, phasors, re_range=(-1, 1), im_range=(-
1, 1), repeat=True, repeat_delay=0,
time_stretch=1, blit=True)

Animation for demonstrating rotating phasors.

Two axes are set up. On top, there is an s-plane to show the real and imaginary components of the phasors. The
current phasor “vector” is shown with a thick line, the current endpoint of the vector is shown with a circle, thin
lines show the projection of the real part of the phasor down to the bottom of the plane, and the time history of
the endpoint of the vectors are shown.

On bottom, the phasors’ real components are plotted in time. The plot is rotated so that time is positive down-
ward, and the x axes of the s-plane and the time plots are lined up. The current value is shown with a circle, thin
lines show the projection from the top of the plot to the current value, and the time history is plotted.

Parameters

• fig (Figure) – matplotlib Figure object on which to animate.

• t (array) – Array of time values at which to plot. Even time spacing is assumed.

• phasors (list) – List of Phasor objects to advance and plot.

• re_range (tuple, optional) – Limits of the real axis.

• im_range (tuple, optional) – Limits of the imaginary axis.

• repeat (bool, optional) – Specifies whether or not to repeat the animation once it
finishes.

• repeat_delay (float, optional) – Amount of time to wait before repeating the
animation in milliseconds.

• time_stretch (float, optional) – Multiplicative factor of the plotting interval.
Increasing time_stretch effectively makes the animation slower without affecting the time
units.

• blit (bool, optional) – Specifies whether or not to use blitting.

new_frame_seq()
Return a new sequence of frame information.

3.4. resonance/functions.py 41

resonance Documentation, Release 0.23.0.dev0

resonance.functions.benchmark_par_to_canonical(p)
Returns the canonical matrices of the Whipple bicycle model linearized about the upright constant velocity
configuration. It uses the parameter definitions from [Meijaard2007].

Parameters p (dictionary) – A dictionary of the benchmark bicycle parameters. Make sure
your units are correct, best to ue the benchmark paper’s units!

Returns

• M (ndarray, shape(2,2)) – The mass matrix.

• C1 (ndarray, shape(2,2)) – The damping like matrix that is proportional to the speed, v.

• K0 (ndarray, shape(2,2)) – The stiffness matrix proportional to gravity, g.

• K2 (ndarray, shape(2,2)) – The stiffness matrix proportional to the speed squared, v**2.

References

resonance.functions.centered_rectangle(xy, width, height, angle=0.0)
Returns the arguments for Rectangle given the x and y coordinates of the center of the rectangle.

Parameters

• xy (tuple of floats) – The x and y coordinates of the center of the rectangle.

• width (float) – Width of the rectangle. When angle=0.0 this is along the x axis.

• height (float) – Height of the rectangle. When angle=0.0 this is along the y axis.

• angle (float) – Angle of rotation about the z axis in degrees.

Returns

• xy_ll (tuple of floats) – The x and y coordinates of the lower left hand corner of the rectangle.

• width (float) – Width of the rectangle. When angle=0.0 this is along the x axis.

• height (float) – Height of the rectangle. When angle=0.0 this is along the y axis.

• angle (float) – Angle of rotation about the z axis in degrees.

resonance.functions.estimate_period(time, signal)
Computes the period of oscillation based on the given periodic signal.

Parameters

• time (array_like, shape(n,)) – An array of monotonically increasing time values.

• signal (array_like, shape(n,)) – An array of values for the periodic signal at
each time in t.

Returns period – An estimate of the period of oscillation.

Return type float

resonance.functions.spring(xA, xB, yA, yB, w, n=1, x=None, y=None)
Returns the x and y coordinates of the points that define a spring diagram between points (xA, yB) and (yA,
yB).

Parameters

• xA (float) – x coordinate of the beginning of the spring.

• xB (float) – x coordinate of the end of the spring.

• yA (float) – y coordinate of the beginning of the spring.

42 Chapter 3. API

resonance Documentation, Release 0.23.0.dev0

• yB (float) – y coordinate of the end of the spring.

• w (float) – The width of the spring.

• n (integer, optional) – Number of coils.

• x (ndarray, shape(2*n + 2), optional) – Preallocated array for the results.

• y (ndarray, shape(2*n + 2), optional) – Preallocated array for the results.

Returns

• x (ndarray, shape(2*n + 2)) – x coordinates of the points that define the ends of each line in
the spring.

• y (ndarray, shape(2*n + 2)) – y coordinates of the points that define the ends of each line in
the spring.

Examples

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from resonance.functions import spring
>>> plt.axes().set_aspect('equal')
>>> for angle in np.arange(0, 2*np.pi, np.pi/4):
... plt.plot(*spring(0.0, np.cos(angle), 0.0, np.sin(angle), 0.1, n=4))
...
>>> plt.show()

3.4. resonance/functions.py 43

resonance Documentation, Release 0.23.0.dev0

44 Chapter 3. API

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

45

resonance Documentation, Release 0.23.0.dev0

46 Chapter 4. Indices and tables

Bibliography

[Meijaard2007] J. P. Meijaard, J. M. Papadopoulos, A. Ruina, and A. L. Schwab, “Linearized dynamics equations
for the balance and steer of a bicycle: A benchmark and review,” Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, vol. 463, no. 2084, pp. 1955–1982, Aug. 2007.

47

resonance Documentation, Release 0.23.0.dev0

48 Bibliography

Python Module Index

r
resonance.functions, 40
resonance.linear_systems, 29
resonance.nonlinear_systems, 38
resonance.system, 25

49

resonance Documentation, Release 0.23.0.dev0

50 Python Module Index

Index

A
add_measurement() (resonance.system.System

method), 25
advance() (resonance.functions.Phasor method), 41
angle (resonance.functions.Phasor attribute), 40
animate_configuration() (reso-

nance.system.System method), 26
AutomobileLateralSystem (class in reso-

nance.linear_systems), 29

B
BallChannelPendulumSystem (class in reso-

nance.linear_systems), 29
BallChannelPendulumSystem (class in reso-

nance.nonlinear_systems), 38
BaseExcitationSystem (class in reso-

nance.linear_systems), 29
benchmark_par_to_canonical() (in module res-

onance.functions), 41
BicycleSystem (class in resonance.linear_systems),

31
BookOnCupSystem (class in reso-

nance.linear_systems), 31

C
canonical_coefficients() (reso-

nance.linear_systems.MultiDoFLinearSystem
method), 33

canonical_coeffs_func (reso-
nance.linear_systems.MultiDoFLinearSystem
attribute), 33

centered_rectangle() (in module reso-
nance.functions), 42

clear() (resonance.functions.Phasor method), 41
ClockPendulumSystem (class in reso-

nance.linear_systems), 31
ClockPendulumSystem (class in reso-

nance.nonlinear_systems), 38

CompoundPendulumSystem (class in reso-
nance.linear_systems), 32

config_plot_func (resonance.system.System
attribute), 26

config_plot_update_func (reso-
nance.system.System attribute), 27

constants (resonance.linear_systems.BaseExcitationSystem
attribute), 29

constants (resonance.linear_systems.BookOnCupSystem
attribute), 31

constants (resonance.linear_systems.ClockPendulumSystem
attribute), 32

constants (resonance.linear_systems.CompoundPendulumSystem
attribute), 32

constants (resonance.linear_systems.MassSpringDamperSystem
attribute), 32

constants (resonance.linear_systems.SimplePendulumSystem
attribute), 35

constants (resonance.linear_systems.SimpleQuarterCarSystem
attribute), 36

constants (resonance.linear_systems.TorsionalPendulumSystem
attribute), 38

constants (resonance.nonlinear_systems.ClockPendulumSystem
attribute), 38

constants (resonance.system.System attribute), 27
coordinates (resonance.linear_systems.BaseExcitationSystem

attribute), 30
coordinates (resonance.linear_systems.BookOnCupSystem

attribute), 31
coordinates (resonance.linear_systems.ClockPendulumSystem

attribute), 32
coordinates (resonance.linear_systems.CompoundPendulumSystem

attribute), 32
coordinates (resonance.linear_systems.MassSpringDamperSystem

attribute), 33
coordinates (resonance.linear_systems.SimplePendulumSystem

attribute), 35
coordinates (resonance.linear_systems.SimpleQuarterCarSystem

attribute), 36
coordinates (resonance.linear_systems.TorsionalPendulumSystem

51

resonance Documentation, Release 0.23.0.dev0

attribute), 38
coordinates (resonance.nonlinear_systems.ClockPendulumSystem

attribute), 39
coordinates (resonance.system.System attribute), 28

D
diff_eq_func (reso-

nance.nonlinear_systems.MultiDoFNonLinearSystem
attribute), 39

E
estimate_period() (in module reso-

nance.functions), 42

F
forced_response() (reso-

nance.linear_systems.MultiDoFLinearSystem
method), 34

forcing_func (reso-
nance.linear_systems.MultiDoFLinearSystem
attribute), 34

FourStoryBuildingSystem (class in reso-
nance.linear_systems), 32

free_response() (resonance.system.System
method), 28

frequency_response() (reso-
nance.linear_systems.SingleDoFLinearSystem
method), 36

frequency_response_plot() (reso-
nance.linear_systems.SingleDoFLinearSystem
method), 36

from_eig() (resonance.functions.Phasor class
method), 41

I
im (resonance.functions.Phasor attribute), 40

M
MassSpringDamperSystem (class in reso-

nance.linear_systems), 32
measurements (resonance.system.System attribute),

28
MultiDoFLinearSystem (class in reso-

nance.linear_systems), 33
MultiDoFNonLinearSystem (class in reso-

nance.nonlinear_systems), 39

N
new_frame_seq() (reso-

nance.functions.PhasorAnimation method),
41

P
period() (resonance.linear_systems.SingleDoFLinearSystem

method), 36
periodic_base_displacing_response()

(resonance.linear_systems.BaseExcitationSystem
method), 30

periodic_forcing_response() (reso-
nance.linear_systems.SingleDoFLinearSystem
method), 36

Phasor (class in resonance.functions), 40
PhasorAnimation (class in resonance.functions), 41
plot_configuration() (resonance.system.System

method), 29

R
radius (resonance.functions.Phasor attribute), 40
re (resonance.functions.Phasor attribute), 40
resonance.functions (module), 40
resonance.linear_systems (module), 29
resonance.nonlinear_systems (module), 38
resonance.system (module), 25

S
SimplePendulumSystem (class in reso-

nance.linear_systems), 35
SimpleQuarterCarSystem (class in reso-

nance.linear_systems), 35
SingleDoFLinearSystem (class in reso-

nance.linear_systems), 36
SingleDoFNonLinearSystem (class in reso-

nance.nonlinear_systems), 40
sinusoidal_base_displacing_response()

(resonance.linear_systems.BaseExcitationSystem
method), 31

sinusoidal_forcing_response() (reso-
nance.linear_systems.SingleDoFLinearSystem
method), 37

speeds (resonance.linear_systems.BaseExcitationSystem
attribute), 30

speeds (resonance.linear_systems.BookOnCupSystem
attribute), 31

speeds (resonance.linear_systems.ClockPendulumSystem
attribute), 32

speeds (resonance.linear_systems.CompoundPendulumSystem
attribute), 32

speeds (resonance.linear_systems.MassSpringDamperSystem
attribute), 33

speeds (resonance.linear_systems.SimplePendulumSystem
attribute), 35

speeds (resonance.linear_systems.SimpleQuarterCarSystem
attribute), 36

speeds (resonance.linear_systems.TorsionalPendulumSystem
attribute), 38

52 Index

resonance Documentation, Release 0.23.0.dev0

speeds (resonance.nonlinear_systems.ClockPendulumSystem
attribute), 39

speeds (resonance.system.System attribute), 29
spring() (in module resonance.functions), 42
states (resonance.system.System attribute), 29
System (class in resonance.system), 25

T
t (resonance.functions.Phasor attribute), 40
TorsionalPendulumSystem (class in reso-

nance.linear_systems), 38
trace_im (resonance.functions.Phasor attribute), 40
trace_re (resonance.functions.Phasor attribute), 40
trace_t (resonance.functions.Phasor attribute), 40

Index 53

	Topical Outline
	Analyzing Vibrating Systems
	Modeling Vibrating Systems
	Designing Vibrating Systems

	Creating and Exercising a Custom Single Degree of Freedom System
	Creating a new system
	Simulating the free response
	Adding measurements
	Plotting the configuration
	Animating the configuration
	Response to sinusoidal forcing
	Frequency response
	Response to periodic forcing

	API
	resonance/system.py
	resonance/linear_systems.py
	resonance/nonlinear_systems.py
	resonance/functions.py

	Indices and tables
	Bibliography
	Python Module Index
	Index

