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CHAPTER 1

Topical Outline

The course is taught over 20 two hour class periods during a quarter system of 10 weeks of instructions and 1 week
for examinations. One of the 20 class periods is reserved for a midterm examination, 2 hours are reserved for exam
reviews leaving 36 hours of in class time. The following lists the topics for each of the class periods which correspond
to the detailed headers below:

L# | Date Notebook #

01 | WSep27 | 1,2

02 | MOct02 | 3

03 | WOct04 | 4

04 | MOct09 |5

05 | WOctll | 6

06 | MOctl16 |7

07 | WOct18 | 8

08 | MOct23 |9

NA | T Oct 24 Drop Date

09 | WOct25 | 10

10 | MOct30 | 11

11 | WNov 01 | 12

12 | M Nov 06 | Exam

13 | WNov08 | 13

NA | FNov 10 | Veterans Day Holiday
14 | MNov13 | 14

I5 | WNov 15 | 15

16 | MNov20 | 16

17 | WNov 22 | 17

NA | RNov 23 | Thanksgiving Holiday
NA | FNov 24 | Thanksgiving Holiday
18 | MNov27 | 18

19 | WNov29 | 19

20 | M Dec04 | 20

21 W Dec 06 | 21

NA | TDec 12 | Final Exam @ 6:00 PM
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1.1 Analyzing Vibrating Systems

1.1.1 1. Introduction to Jupyter
This notebook introduces students to the Jupyter notebook environment and establishes good practices for creating
computational notebooks and scientific python programming.
After the completion of this assignment students will be able to:
* open Jupyter notebooks and operate basic functionality
« fetch assignments, complete exercises, submit work and view the graded work
* solve basic scientific python problems

* create a well formatted and fully executing notebook

1.1.2 2. Introduction to vibrations: Book Balancing on a Cup

This notebook introduces a single degree of freedom vibratory system in which a textbook balances on a cylindrical
cup. The system is implemented as a model that students can interact with in order to visualize its free response and
compare to the demonstration in the classroom.

After the completion of this assignment students will be able to:
* visualize a system’s free response
* estimate the period of a sinusoidal vibration from a time series
e compare a computer simulation result to experimental result
* interactively adjust the book inertia to see the affect on system response

* understand the concept of natural frequency nd its relationship to mass/inertia

1.1.3 3. Measuring a Bicycle Wheel’s Inertia

This notebook introduces the concept of using vibratory characteristics to estimate parameters of an existing system.
It discusses how vibrations can be measured and how these measurements might relate to parameters of interest, such
as the inertia of a bicycle wheel.

After the completion of this assignment students will be able to:
¢ describe different methods of measuring vibrations
* choose appropriate sensors and sensor placement
* visualize the vibrational measurements
* use curve fitting to estimate the period of oscillation
* understand the concept of natural frequency and its relationship to mass/inertia and stiffness
* state two of the three fundamental characteristics that govern vibration (mass/inertia and stiffness)

* use frequency domain techniques to characterize a system’s behavior
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1.1.4 4. Clock Pendulum with Air Drag Damping

This notebook introduces the third fundamental characteristic of vibration: energy dissipation through damping. A
simple pendulum model is implemented that allows students to vary the damping parameters and visualize the three
regimes of linear damping.

After the completion of this assignment students will be able to:
* understand the concept of damped natural frequency and its relationship to mass/inertia, stiffness, and damping
* state the three fundamental characteristics that make a system vibrate
» compute the free response of a linear system with viscous-damping in all three damping regimes
* identify critically damped, underdamped, and overdamped behavior
* determine whether a linear system is over/under/critically damped given its dynamic properties

* understand the difference between underdamping, overdamping, and crticial damping

1.1.5 5. Clock Pendulum with Air Drag and Joint Friction

This notebook builds on the previous one by introducing nonlinear damping through Coulomb friction. Students will
be able to work with both a linear and nonlinear version of the same system (pendulum) in order to compare the free
response in both cases.

After the completion of this assignment students will be able to:
¢ identify the function that governs the decay envelope
* compare this non-linear behavior to the linear behavior
* estimate the period of oscillation

» compute the free response of a non-linear system with viscous and coulomb damping

1.1.6 6. Vertical Vibration of a Bus Driver’s Seat
This notebook introduces external forcing of a vibratory system, where the external force is modeled as a sinusoidal
input to the bottom of a bus driver’s seat.
After the completion of this assignment students will be able to:
* excite a system with a sinusoidal input
 understand the difference in transient and steady state solutions
* use autocorrelation to determine period
* relate the frequency response to the time series
* create a frequency response plot

* define resonance and determine the parameters that cause resonance

1.1.7 7. Vertical vibration of a Bus Driver’s Seat with a Leaf Spring

This notebook builds on the previous one by replacing the linear spring with a realistic leaf spring.
After the completion of this assignment students will be able to:

* create a force versus displacement curve for a leaf spring

1.1. Analyzing Vibrating Systems 3
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* describe the time response and frequency response of a non-linear system

» show that sinusoidal fitting does not necessarily describe non-linear vibration

1.1.8 8. Bicycle Lateral Vibration
This notebook introduces a simple lean and steer bicycle model as an example of a system with multiple degrees of
freedom. Coupling and modes are discussed from a data analysis perspective.
After the completion of this assignment students will be able to:
 get a sense of the coupling of input to output through frequency response plots
* simulate a 2 DoF vibratory model
* identify a MDOF system and see effects of coupling through time and frequency domain
* determine if a general 2 DoF is stable

* sweep through input frequencies to discover modal frequencies

1.1.9 9. Simulating a building during an earthquake
This notebook uses a lumped parameter multi-story building model as a many-degree-of-freedom system with all
oscillatory modes.
After the completion of this assignment students will be able to:
 examine time domain and frequency coupling with MDoF
* sweeping through frequencies to discover modal frequencies

* visualize the system’s response at modal frequencies to see mode shapes

1.2 Modeling Vibrating Systems

1.2.1 10. Modeling the Bicycle Wheel Inertia Measurement System

This notebook walks through modeling two different test rigs for determining the vibrational characteristics of a
bicycle wheel. After coming up with a simple model the students will use the canonical linear form of the equations
of motion to derive various vibrational parameters.

After the completion of this assignment students will be able to:
e derive the equations of motion of a compound pendulum with Lagrange’s method
¢ derive the equations of motion of a torsional pendulum with Lagrange’s method
¢ linearize the compound pendulum equation
* put equations in canonical form

¢ review solutions to ODEs
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1.2.2 11. Modeling a non-linear spring

TODO : Think this out more.
After the completion of this assignment students will be able to:

» will be able to derive the nonlinear euqations of motion of a system with simple kinmeatics with lagrange’s
method

1.2.3 12. Modeling the car on the bumpy road
Here will will present the base excitation single degree of freedom system and the students will derive the equations
of motion. They will then explore the displacement and force transmisiblity frequency response functions.
After the completion of this assignment students will be able to:
* derive the linear equations of motion ofa system with simple kinematics using lagrange’s method

e create system object with custom euqations of motion an simulate the system

1.2.4 13. Modeling the book on a cup

The book balancing on the cup will be revisited. The students will derive the equations of motion which require more
complex kinematic analysis and explore the analytical equations of motion. The stability thresholds will be determined
as well as the period from the linear model.

After the completion of this assignment students will be able to:
* derive the euqations of motion of a system with non-trivial kinematics with lagrange’s method
* apply a linearization procedure to non-linear equations of motion

 determine the stability of a linear system analytically and verify through simulation

1.2.5 14. Balancing your car tire at the autoshop

The mass imbalance problem will be presented through the analytical model of an unbalance car tire. The frequency
response will be derived and examined.

After the completion of this assignment students will be able to:

* derive the equations of motion fo a mass imbalance system

1.2.6 15. Engine cam non-sinusoidal periodic forcing
Using an engine cam piecewise periodic function the students will learn how a Fourier series can be used to find the
solution to the differential equations symbolicaly.
After the completion of this assignment students will be able to:
* generate a Fourier series of a periodic function

* find the analytic solution of the the mass-spring-damper system

1.2. Modeling Vibrating Systems 5
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1.2.7 16. Modeling a bulding during an earthquake
We will revisit the multi-story building model and derive the equations of motion for the system. The students will use
eigenanalysis of the simple system to discover the modes of motion and simulate the behavior.
After the completion of this assignment students will be able to:
 perform modal analysis of the system to determine its modal frequencies and mode shapes
* represent model using a matric equation of motion (canoncial form)
* formulate the equations of motion for a MDoF system
* use eignvalue analyssis to determine the modeshapes of a mDoF system
¢ plot the motion of a MDOoF system (with no damping) using the analytical solution

¢ form a MDoF model corresponding to a chain of floors in a buliding

1.2.8 17. Bicycle Model

The students will be given the analytical canocial form of the bicycle equations that do not have simple damping. They
will have to convert to state space form and do a full eigenanalysis of the general form. The modes will be examined
and the nature of the bicycle motion discovered.

After the completion of this assignment students will be able to:
* convert the canonical linear form into state space form

* interpret eigenvalues and eienvectors of a general 2 DoF linear system

1.3 Designing Vibrating Systems

1.3.1 18. Design a Clock that Keeps Time

The students will be presented with a compound pendulum model of a clock’s bob that does not keep time well due to
friction and air drag. They will be tasked with designing a system that adds in the right amount of additional energy
so that the pendulum has the desired constant period.

After the completion of this assignment students will be able to:
* develop an analytic model of a energy injection system
* simulate the motion of clock and determine its time varying period

* choose the energy injection system parameters that will cause the clock to work as intended

1.3.2 19. Isolator Selection
The students will be presented with a model of X and asked to select and/or design a commercially available vibration
isolator that ensures the system meets specific vibrational design criteria.
After the completion of this assignment students will be able to:
* discuss and justify trade-offs and design decisions
* model the system with additional damping provided by isolation

* select/design a vibration isolator to meet given vibration specifications
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* analyze a system’s motion to determine its vibrational characteristics

1.3.3 20. Designing a Tuned Mass Damper to Earthquake Proof a Building

Students will be presented with a single (or multi?) floor building model. They will need to modify the model to
includes a laterally actuated mass on the roof. They will be asked to design an actuation scheme that prevents the
building from having too large of displacements or resonance while excited by a earthquake-like vibration at its base.

After the completion of this assignment students will be able to:
* add a generic vibration absorber to a building model
* use a building model to simulate the motion of a building without damping
* choose design criteria for the building and justify decisions (with ISO standards)
* design an absorber that meets their design criteria

* use the frequency response function to demonstrate the effect of the vibration absorber

1.3.4 21. Designing a stable bicycle

The students will be presented with a 2 DoF linear model of a bicycle in canonical form with analytical expressions for
the M, C, and K matrix entries that are functions of the 25 bicycle parameters. The students will be asked to discover
bicycle designs that meet certain criteria through eigenanalysis and simulation.

After the completion of this assignment students will be able to:
¢ determine parameters which cause the 2 DoF system to be stable/unstable
* simulate and visualize the motion of a bicycle with difference parameters

 determine and describe the influence of the physical parameters, initial conditions, and steering input on the
dynamics of the vehicle

* design a bicycle that meets specific design criteria

1.3.5 22. Designing Shock Absorbtion for a Car

The students will be presented with 2D planar data generated from a “ground truth” 3 DoF half car model. Their job
will be to design a quarter car model that behaves similarly to the ground truth model. Once they have a working simple
model, then they will design an improved shock absorber for the quarter car model using analytic and computational
methods. The instructors will then provide the students with the ground truth model, i.e. the “real” car, and the students
will need to show that the ride quality is improved and that design criteria is met.

After the completion of this assignment students will be able to:
* develop a simple analytic model that predicts motion provided from planar 2D “experimental” data

* select springs and dampers to meet given design criteria by demonstrating performance with the simple analytic
model

* demonstrate that the designed shock absorber works well for the “real” car
* discuss why the design does or does not meet the design criteria

* reflect on their modeling and design decisions after having tested it against the ground truth model

1.3. Designing Vibrating Systems 7
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CHAPTER 2

Linear Systems API

class resonance.linear_systems.BookOnCupSystem
This system represents dynamics of a typical engineering textbook set atop a cylinder (a coffee cup) such that
the book can vibrate without slip on the curvature of the cup. It is described by:

constants
thickness, t [meters] the thickness of the book
length, 1 [meters] the length of the edge of the book which is tagent to the cup’s surface
mass, m [Kilograms] the mass of the book
radius, r [meters] the outer radius of the cup
coordinates
book_angle, theta [radians] the angle of the book with respect to the gravity vector
speeds
book_angle_vel, theta [radians] the angular rate of the book with repsect to the gravity vector

class resonance.linear_systems.CompoundPendulumSystem
This system represents dynamics of a simple compound pendulum in which a rigid body is attached via a
revolute joint to a fixed point. Gravity acts on the pendulum to bring it to an equilibrium state and there is no
friction in the joint. It is described by:

constants
pendulum_mass, m [kg] The mass of the compound pendulum.
inertia_about_joint, i [kg m**2] The moment of inertia of the compound pendulum about the revolute
joint.
joint_to_mass_center, 1 [m] The distance from the revolute joint to the mass center of the compound
pendulum.

acc_due_to_gravity, g [m/s**2] The acceleration due to gravity.

coordinates




resonance Documentation, Release 0.2.0

angle, theta [rad] The angle of the pendulum relative to the direction of gravity. When theta is zero the
pendulum is hanging down in it’s equilibrium state.

speeds

angle_vel, theta_dot [rad /s] The angular velocity of the pendulum about the revolute joint axis.

class resonance.linear_systems.SimplePendulumSystem

This system represents dynamics of a simple pendulum in which a point mass is fixed on a massless pendulum
arm of some length to a revolute joint. Gravity acts on the pendulum to bring it to an equilibrium state and there
is no friction in the joint. It is described by:

constants
pendulum_mass, m [kg] The mass of the compound pendulum.
pendulum_length, 1 [m] The distance from the revolute joint to the point mass location.
acc_due_to_gravity, g [m/s**2] The acceleration due to gravity.

coordinates

angle, theta [rad] The angle of the pendulum relative to the direction of gravity. When theta is zero the
pendulum is hanging down in it’s equilibrium state.

speeds

angle_vel, theta_dot [rad / s] The angular velocity of the pendulum about the revolute joint axis.

class resonance.linear_systems.SingleDoFLinearSystem

This is the base system for any linear single degree of freedom system. It can be subclassed to make a custom
system or instantiated and the attributes and methods added dynamically.

constants
_ParametersDict — A custom dictionary that contains parameters that do not vary with time.

coordinates
_CoordinatesDict — A custom dictionary that contains the generalized coordinate which varies with time.

speeds
_CoordinatesDict — A custom dictionary that contains the generalized speed which varies with time.

measurements
_MeasurementsDict — A custom dictionary that contains parameters that are functions of the constants,
coordinates, and other measurements.

config_plot_func
function — A function that generates a matplotlib plot that uses the instantaneous values of the constants,
coordinates, and measurements.

config plot_update_func
function — A function that updates the configuration plot that uses the time series values of the constants,
coordinates, and measurements. Defines a matplotlib animation frame.

add_measurement ()
Used to dynamically add functions to compute measurement values.

free_response ()
Simulates the system and returns a time series of the coordinates and measurments.

plot_configuration ()
Generates the plot defined by config_plot_func.

animate_configutation ()
Generates the animation defined by config_plot_func and config_plot_update_func.

10
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period()

Returns the damped natural period of the system.

add_measurement (name, func)

Creates a new measurement entry in the measurements attribute that uses the provided function to compute
the measurement.

Parameters

* name (string)- This must be a valid Python variable name and it should not clash with
any names in the constants or coordinates dictionary.

e func (function) — This function must only have existing parameter, coordinate, or
measurement names in the function signature. These can be a subset of the available
choices and any order is permitted. The function must be able to operate on arrys, i.e. use
NumPy vectorized functions inside. It should return a single variable, scalar or array, that
gives the values of the measurement.

Examples

>>> import numpy as np
>>> def f (par2, meas4, parl, coordb):

return par2 + meas4 + parl + np.abs(coord5)
>>> f£(1.0, 2.0, 3.0, -4.0):

10.0
>>> f£(1.0, 2.0, 3.0, np.array([1.0, 2.0, -4.01))
array([ 7., 8., 10.1)

>>> sys.add_measurement ('meas5', f)
>>> sys.measurements|['meas5']
10.0

animate_configuration (**kwargs)

Returns a matplotlib animation function based on the configuration plot and the configuration plot update
function.

config_plot_func

The configuration plot function arguments should be any of the system’s constants, coordinates, measure-
ments, or ‘time’. No other arguments are valid. The function has to return the matplotlib figure as the first
item but can be followed by any number of mutable matplotlib objects that you may want to change during
an animation. Refer to the matplotlib documentation for tips on creating figures.

Examples

>>> sys = SingleDoFLinearSystem()
>>> sys.constants['radius'] = 5.0
>>> sys.constants|['center_y'] = 10.0
>>> sys.coordinates|['center_x'] = 0.0
>>> def plot (radius, center_x, center_y, time):
fig, ax = plt.subplots(l, 1)
circle = Circle((center_x, center_y), radius=radius)
ax.add_patch(circle)
ax.set_title(time)
return fig, circle, ax

>>> sys.config_plot_function = plot
>>> sys.plot_configuration ()

11
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[

config plot_update_func
The configuration plot update function arguments should be any of the system’s constants, coordinates,
measurements, or ‘time’ in any order with the returned values from the config_plot_func as the
last arguments in the exact order as in the configuration plot return statement. No other arguments are
valid. Nothing need be returned from the function. See the matplotlib animation documentation for tips
on creating these update functions.

Examples

>>> sys
>>> sys.
>>> sys.
>>> sys
>>> def

>>> sSys
>>> def

>>> sys
>>> sys

= SingleDoFLinearSystem()
constants['radius'] = 5.0
constants['center_vy'] = 10.0

.coordinates|['center x'] = 0.0

plot (radius, center_x, center_y, time):

fig, ax = plt.subplots(l, 1)

circle = Circle((center_x, center_y), radius=radius)
ax.add_patch(circle)

ax.set_title(time)

return fig, circle, ax

.config_plot_function = plot

update (center_y, center_x, time, circle, ax):

# NOTE : that circle and ax have to be the last arguments and be
# in the same order as returned from plot ()
circle.set_xy((center_x, center_y))

ax.set_title(time)

fig.canvas.draw()

.config_plot_update_func = update
.animate_configuration ()

constants

A dictionary containing the all of the system’s constants.

Examples

>>> sys
>>> sys.
{}

>>> sys.
>>> sys.
{'"mass"':
>>> del
>>> sys
{}

>>> sys.
>>> sys.
{'length

= SingleDoFLinearSystem/()
constants

constants['mass'] = 5.0
constants

5.0}
sys.constants['mass']

.constants

constants['length'] = 10.0
constants
': 10.0}

coordinates

A dictionary containing the system’s generalized coordinate.

12
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free_response (final_time, initial_time=0.0, sample_rate=100)
Returns a Pandas data frame with monotonic time values as the index and columns for each coordinate
and measurement at the time value for that row. Note that this data frame is stored on the system as the
vairable result until this method is called again, which will overwrite it.

Parameters

e final time (float) — A value of time in seconds corresponding to the end of the
simulation.

* initial time (float, optional)- A value of time in seconds corresponding to
the start of the simulation.

* sample_rate (integer, optional)— The sample rate of the simulation in Hertz
(samples per second). The time values will be reported at the initial time and final time,
along with times space equally based on the sample rate.

Returns df — A data frame index by time with all of the coordinates and measurements as
columns.

Return type pandas.DataFrame

measurements
A dictionary containing the all of the system’s measurements.

period()
Returns the (damped) period of oscillation of the coordinate in seconds.

plot_configuration ()
Returns a matplotlib figure generated by the function assigned to the config_plot_func attribute.
You may need to call matplotlib.pyplot.show () to display the figure.

Returns
* fig (matplotlib.figure. Figure) — The first returned object is always a figure.
* *args (matplotlib objects) — Any matplotlib objects can be returned after the figure.

speeds
A dictionary containing the system’s generalized speed.

class resonance.linear_systems.TorsionalPendulumSystem
This system represents dynamics of a simple torsional pendulum in which the torsionally elastic member’s axis
is aligned with gravity and the axis of the torsion member passes through the mass center of an object attached
to it’s lower end. The top of the torsion rod is rigidly attached to the “ceiling”. It is described by:

constants
rotational_inertia, I [kg m**2] The moment of inertia of the object attached to the pendulum.

torsional_damping, C [N s/ m] The viscous linear damping coefficient which represents any energy
disipation from things like air resistance, slip, etc.

torsional_stiffness, K [N/ m] The linear elastic stiffness coefficient of the torsion member, typically a
round slender rod.

coordinates
torsional_angle, theta [rad]

speeds
torsional_angle_vel, theta_dot [rad / s]

resonance. functions.estimate_period (time, signal)
Computes the period of oscillation based on the given periodic signal.

13
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Parameters
* time (array_like, shape (n,))— Anarray of monotonically increasing time values.

* signal (array_like, shape (n,))— An array of values for the periodic signal at
each time in t.

Returns period — An estimate of the period of oscillation.

Return type float

14 Chapter 2. Linear Systems API
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Indices and tables

* genindex
* modindex

e search
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